Skip to main content

Posts

Showing posts with the label Electronic Tutorial

Thyristors Working

Thyristor Tutorial In many ways the Silicon Controlled Rectifier, SCR or just  Thyristor  as it is more commonly known, is similar in construction to the transistor. It is a multi-layer semiconductor device, hence the “silicon” part of its name. It requires a gate signal to turn it “ON”, the “controlled” part of the name and once “ON” it behaves like a rectifying diode, the “rectifier” part of the name. In fact the circuit symbol for the  thyristor  suggests that this device acts like a controlled rectifying diode. Thyristor Symbol However, unlike the junction diode which is a two layer ( P-N ) semiconductor device, or the commonly used bipolar transistor which is a three layer ( P-N-P, or N-P-N ) switching device, the  Thyristor  is a four layer ( P-N-P-N ) semiconductor device that contains three PN junctions in series, and is represented by the symbol as shown. Like the diode, the Thyristor is a unidirectional device, that is it will only conduct current in

MOSFET Symbol

MOSFET stands for Metal Oxide Silicon Field Effect Transistor or Metal Oxide Semiconductor Field Effect Transistor. This is also called as IGFET meaning Insulated Gate Field Effect Transistor. The FET is operated in both depletion and enhancement modes of operation. The following figure shows how a practical MOSFET looks like. Construction of a MOSFET The construction of a MOSFET is a bit similar to the FET. An oxide layer is deposited on the substrate to which the gate terminal is connected. This oxide layer acts as an insulator (sio 2  insulates from the substrate), and hence the MOSFET has another name as IGFET. In the construction of MOSFET , a lightly doped substrate, is diffused with a heavily doped region. Depending upon the substrate used, they are called as  P-type  and  N-type   MOSFETs . The following figure shows the construction of a MOSFET . The voltage at gate controls the operation of the MOSFET . In this case, both positive and negative voltages can be

What is a transformer and it's types

What is a transformer? A transformer can be defined as a static device which helps in the transformation of electric power in one circuit to electric power of the same frequency in another circuit. The voltage can be raised or lowered in a circuit, but with a proportional increase or decrease in the current ratings. In this article we will be learning about Transformer basics and working principle Transformer – Working Principle The main principle of operation of a transformer is mutual inductance between two circuits which is linked by a common magnetic flux. A basic transformer consists of two coils that are electrically separate and inductive, but are magnetically linked through a path of reluctance. The working principle of the transformer can be understood from the figure below. As shown above the electrical transformer has primary and secondary windings. The core laminations are joined in the form of strips in between the strips you can see that there are some narrow

types of diode and their uses

Various Types Of Diodes With Their Characteristics & Uses The diode is the most used semiconductor device in electronics circuits.  It is a two-terminal electrical check valve that allows the flow of current in one direction . They are mostly made up of silicon but germanium is also used. Usually, they are used for rectification. But there are different properties & characteristics of diodes which can be used for different application. These characteristics are modified to form different types of diodes. Nowadays, several different types of diodes having different properties are available.  P-N Junction Diode : The P-N junction diode is made up of semiconductor material. It consists of two layers of semiconductors. One layer is doped with P-type material and the other layer with N-type material. The combination of these both P and N-type layers form a junction known as the  P-N junction.  Hence the name  P-N junction diode . It allows the flow of current in th