Skip to main content

Induction Motor: Working Principle, Types, & Definition

Induction Motor: Working Principle, Types, & Definition


What is an Induction Motor?

An induction motor (also known as an asynchronous motor) is a commonly used AC electric motor. In an induction motor, the electric current in the rotor needed to produce torque is obtained via electromagnetic induction from the rotating magnetic field of the stator winding. The rotor of an induction motor can be a squirrel cage rotor or wound type rotor.
Induction motors are referred to as ‘asynchronous motors’ because they operate at a speed less than their synchronous speed. So first thing to understand – what is synchronous speed?
Induction-Motor
Induction Motor
Synchronous speed is the speed of rotation of the magnetic field in a rotary machine, and it depends upon the frequency and number poles of the machine. The induction motor always runs at speed less than its synchronous speed. The rotating magnetic field produced in the stator will create flux in the rotor, hence causing the rotor to rotate. Due to the lag between the flux current in the rotor and the flux current in the stator, the rotor will never reach its rotating magnetic field speed (i.e. the synchronous speed).
There are basically two types of induction motor. The types of induction motor depend upon the input supply. There are single phase induction motors and three phase induction motors. Single phase induction motors arenot a self-starting motor, and three phase induction motor are a self-starting motor.

Working Principle of Induction Motor

We need to give double excitation to make a DC motor to rotate. In the DC motor, we give one supply to the stator and another to the rotor through brush arrangement. But in induction motor, we give only one supply, so it is interesting to know how an induction motor works. It is simple, from the name itself we can understand that here, the induction process is involved. When we give the supply to the stator winding, a magnetic flux gets produced in the stator due to the flow of current in the coil. The rotor winding is so arranged that each coil becomes short-circuited.
The flux from the stator cuts the short-circuited coil in the rotor. As the rotor coils are short-circuited, according to Faraday’s law of electromagnetic induction, the current will start flowing through the coil of the rotor. When the current through the rotor coils flows, another flux gets generated in the rotor. Now there are two fluxes, one is stator flux, and another is rotor flux. The rotor flux will be lagging in respect of the stator flux. Because of that, the rotor will feel a torque which will make the rotor to rotate in the direction of the rotating magnetic field. This is the working principle of both single and three phase induction motors.

Types of Induction Motors

The types of induction motors can be classified depending on whether they are a single phase or three phase induction motor.

Single Phase Induction Motor

The types of single phase induction motors include:
  1. Split Phase Induction Motor
  2. Capacitor Start Induction Motor
  3. Capacitor Start and Capacitor Run Induction Motor
  4. Shaded Pole Induction Motor

Three Phase Induction Motor

The types of three phase induction motors include:
  1. Squirrel Cage Induction Motor
  2. Slip Ring Induction Motor
We have already mentioned above that the single-phase induction motor is not a self-starting motor, and that the three-phase induction motor is self-starting. So what is a self-starting motor?
When the motor starts running automatically without any external force applied to the machine, then the motor is referred to as ‘self-starting’. For example, we see that when we put on the switch the fan starts to rotate automatically, so it is a self-starting machine. Point to be noted that fan used in home appliances is a single phase induction motor which is inherently not self-starting. How? Does a question arise as to how it works? We will discuss it now.

Why is Three Phase Induction Motor Self Starting?

In a three phase system, there are three single phase lines with a 120° phase difference. So the rotating magnetic field has the same phase difference which will make the rotor to move. If we consider three phases a, b, and c when phase a gets magnetized, the rotor will move towards the phase a winding a, in the next moment phase b will get magnetized and it will attract the rotor and then phase c. So the rotor will continue to rotate.

Why Single Phase Induction Motor is not Self Starting?

It has only one phase still it makes the rotor to rotate, so it is quite interesting. Before that, we need to know why a single phase induction motor is not a self-starting motor and how we overcome the problem. We know that the AC supply is a sinusoidal wave and it produces a pulsating magnetic field in the uniformly distributed stator winding.
Since we can assume the pulsating magnetic field as two oppositely rotating magnetic fields, there will be no resultant torque produced at the starting, and hence the motor does not run. After giving the supply, if the rotor is made to rotate in either direction by an external force, then the motor will start to run. We can solve this problem by making the stator winding into two winding – one is the main winding, and another is auxiliary winding.
We connect one capacitor in series with the auxiliary winding. The capacitor will make a phase difference when current flows through both coils. When there is a phase difference, the rotor will generate a starting torque, and it will start to rotate. Practically we can see that the fan does not rotate when the capacitor gets disconnected from the motor, but if we rotate with the hand, it will start rotating. That is why we use a capacitor in the single-phase induction motor.
Due to the various advantages of an induction motor, there is a wide range of applications of an induction motor. One of their biggest advantages is their high efficiency – which can go as high as 97%. The main disadvantage of an induction motor is that the speed of the motor varies with the applied load. The direction of rotation of induction motor can easily be changed by changing the phase sequence of three-phase supply, i.e., if RYB is in a forward direction, the RBY will make the motor to rotate in reverse direction. This is in the case of three phase motor, but in a single phase motor, the direction can be reversed by reversing the capacitor terminals in the winding.

Comments

Popular Posts

MOSFET Symbol

MOSFET stands for Metal Oxide Silicon Field Effect Transistor or Metal Oxide Semiconductor Field Effect Transistor. This is also called as IGFET meaning Insulated Gate Field Effect Transistor. The FET is operated in both depletion and enhancement modes of operation. The following figure shows how a practical MOSFET looks like. Construction of a MOSFET The construction of a MOSFET is a bit similar to the FET. An oxide layer is deposited on the substrate to which the gate terminal is connected. This oxide layer acts as an insulator (sio 2  insulates from the substrate), and hence the MOSFET has another name as IGFET. In the construction of MOSFET , a lightly doped substrate, is diffused with a heavily doped region. Depending upon the substrate used, they are called as  P-type  and  N-type   MOSFETs . The following figure shows the construction of a MOSFET . The voltage at gate controls the operation of the MOSFET . In this case, both positive and n...

What is Electrical Switch

What is an Electrical Switch : An electrical switch is any device used to interrupt the flow of electrons in a circuit. Switches are essentially binary devices: they are either completely on (“closed”) or completely off (“open”). There are many different types of switches, and we will explore some of these types in this chapter. Learn the Different Types of Switches : Switches can be of mechanical or electronic type, Mechanical switches  must be activated physically, by moving, pressing, releasing, or touching its contacts. Electronic switches  do not require any physical contact in order to control a circuit. These are activated by semiconductor action. Mechanical Switches : Mechanical switches can be classified into different types based on several factors such as method of actuation (manual, limit and process switches), number of contacts (single contact and multi contact switches), number of poles and throws (SPST, DPDT, SPDT, etc.), operation and ...

Thyristors Working

Thyristor Tutorial In many ways the Silicon Controlled Rectifier, SCR or just  Thyristor  as it is more commonly known, is similar in construction to the transistor. It is a multi-layer semiconductor device, hence the “silicon” part of its name. It requires a gate signal to turn it “ON”, the “controlled” part of the name and once “ON” it behaves like a rectifying diode, the “rectifier” part of the name. In fact the circuit symbol for the  thyristor  suggests that this device acts like a controlled rectifying diode. Thyristor Symbol However, unlike the junction diode which is a two layer ( P-N ) semiconductor device, or the commonly used bipolar transistor which is a three layer ( P-N-P, or N-P-N ) switching device, the  Thyristor  is a four layer ( P-N-P-N ) semiconductor device that contains three PN junctions in series, and is represented by the symbol as shown. Like the diode, the Thyristor is a unidirectional device, that is it ...